$(\mathop A\limits^ \to + \mathop B\limits^ \to )\, \times (\mathop A\limits^ \to - \mathop B\limits^ \to )$ का मान है
$0$
${A^2} - {B^2}$
$\mathop B\limits^ \to \times \mathop A\limits^ \to $
$2(\mathop B\limits^ \to \times \mathop A\limits^ \to )$
$(\mathop A\limits^ \to + \mathop B\limits^ \to )\, \times (\mathop A\limits^ \to - \mathop B\limits^ \to )$ का मान है
$(\vec A + \vec B) \times (\vec A - \vec B)$
$ = \vec A \times \vec A - \vec A \times \vec B + \vec B \times \vec A - \vec B \times \vec B$
$ = 0 - \vec A \times \vec B + \vec B \times \vec A - 0$
$ = \vec B \times \vec A + \vec B \times \vec A = 2(\vec B \times \vec A)$
Other Language