दो सदिशों P^ → तथा Q^ → का परिणामी R^ → है

Your Ultimate Guide to JEE & NEET Question Solutions

  • Home
  • Solution
  • HI
  • दो सदिशों P^ → तथा Q^ → का परिणामी R^ → है

दो सदिशों $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop R\limits^ \to $ है। यदि $Q$ को दुगना कर दिया जाए तो नया सदिश $P$ के लम्बवत हो जाता है। $R$ निम्न के बराबर होगा

A

$P$

B

$(P+Q)$

C

$Q$

D

$(P-Q)$

दो सदिशों $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop R\limits^ \to $ है। यदि $Q$ को दुगना कर दिया जाए तो नया सदिश $P$ के लम्बवत हो जाता है। $R$ निम्न के बराबर होगा

Let the angle between two vectors $P$ and $Q$ be $\alpha$ and their resultant is $R$

So we can write

$R^{2}=P^{2}+Q^{2}+2 P Q \cos \alpha \ldots \ldots[1]$

When $Q$ is doubled then let the resultant vector be $R_{1},$ So we can write

$R_{1}^{2}=P^{2}+4 Q^{2}+4 P Q \cos \alpha \ldots \ldots .[2]$

Again by the given condition $R_{1}$ is perpendicular to $P$

So $4 Q^{2}=P^{2}+R_{1}^{2} \dots \ldots .[3]$

Combining $[ 2]$ and $[ 3]$ we get

$R_{1}^{2}=P^{2}+P^{2}+R_{1}^{2}+4 P Q \cos \alpha$

$\Rightarrow 2 P Q \cos \alpha=-P^{2} \dots \dots[4]$

combining $[ 1]$ and $[ 4]$ we get

$R^{2}=P^{2}+Q^{2}-P^{2}$

$\Rightarrow R=Q$