यदि | A^ →× B^ → | = √(3) A^ → . B^ → , तब

Your Ultimate Guide to JEE & NEET Question Solutions

  • Home
  • Solution
  • HI
  • यदि | A^ →× B^ → | = √(3) A^ → . B^ → , तब

यदि $|\mathop A\limits^ \to \times \mathop B\limits^ \to | = \sqrt 3 \mathop A\limits^ \to .\mathop B\limits^ \to ,$ तब$|\mathop A\limits^ \to + \mathop B\limits^ \to |$ का मान होगा

A

${\left( {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 3 }}} \right)^{1/2}}$

B

$A + B$

C

${({A^2} + {B^2} + \sqrt 3 AB)^{1/2}}$

D

${({A^2} + {B^2} + AB)^{1/2}}$

यदि $|\mathop A\limits^ \to \times \mathop B\limits^ \to | = \sqrt 3 \mathop A\limits^ \to .\mathop B\limits^ \to ,$ तब$|\mathop A\limits^ \to + \mathop B\limits^ \to |$ का मान होगा

$|\,\mathop A\limits^ \to \times \mathop B\limits^ \to |\, = \sqrt 3 (\mathop A\limits^ \to .\mathop B\limits^ \to )$

$AB\sin \theta = \sqrt 3 AB\cos \theta $$ \Rightarrow $$\tan \theta = \sqrt 3 $$⇒$ $\theta = 60^\circ $

अब $|\overrightarrow R |\, = \,|\overrightarrow A + \overrightarrow B |\, = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } $

$ = \sqrt {{A^2} + {B^2} + 2AB\left( {\frac{1}{2}} \right)} $

$ = {({A^2} + {B^2} + AB)^{1/2}}$