यदि $|\mathop A\limits^ \to \times \mathop B\limits^ \to | = \sqrt 3 \mathop A\limits^ \to .\mathop B\limits^ \to ,$ तब$|\mathop A\limits^ \to + \mathop B\limits^ \to |$ का मान होगा
${\left( {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 3 }}} \right)^{1/2}}$
$A + B$
${({A^2} + {B^2} + \sqrt 3 AB)^{1/2}}$
${({A^2} + {B^2} + AB)^{1/2}}$
यदि $|\mathop A\limits^ \to \times \mathop B\limits^ \to | = \sqrt 3 \mathop A\limits^ \to .\mathop B\limits^ \to ,$ तब$|\mathop A\limits^ \to + \mathop B\limits^ \to |$ का मान होगा
$|\,\mathop A\limits^ \to \times \mathop B\limits^ \to |\, = \sqrt 3 (\mathop A\limits^ \to .\mathop B\limits^ \to )$
$AB\sin \theta = \sqrt 3 AB\cos \theta $$ \Rightarrow $$\tan \theta = \sqrt 3 $$⇒$ $\theta = 60^\circ $
अब $|\overrightarrow R |\, = \,|\overrightarrow A + \overrightarrow B |\, = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } $
$ = \sqrt {{A^2} + {B^2} + 2AB\left( {\frac{1}{2}} \right)} $
$ = {({A^2} + {B^2} + AB)^{1/2}}$
Other Language