यदि $\mathop A\limits^ \to = 3\hat i + \hat j + 2\hat k$ तथा $\mathop B\limits^ \to = 2\hat i - 2\hat j + 4\hat k$ तो $|\mathop A\limits^ \to \times \mathop B\limits^ \to |\,$का मान होगा
$8\sqrt 2 $
$8\sqrt 3 $
$8\sqrt 5 $
$5\sqrt 8 $
यदि $\mathop A\limits^ \to = 3\hat i + \hat j + 2\hat k$ तथा $\mathop B\limits^ \to = 2\hat i - 2\hat j + 4\hat k$ तो $|\mathop A\limits^ \to \times \mathop B\limits^ \to |\,$का मान होगा
$\overrightarrow A \, \times \,\overrightarrow B \, = \left| {\,\begin{array}{*{20}{c}}{\hat i\,\,}&{\hat j\,\,}&{\hat k}\\{3\,\,}&{1\,\,}&2\\{2\,\,\,}&{ - 2\,\,\,}&4\end{array}\,} \right|\,$
$ = (1 \times 4 - 2 \times - 2)\hat i + (2 \times 2 - 4 \times 3)\hat j + (3 \times - 2 - 1 \times 2)\hat k$
$ = 8\hat i - 8\hat j - 8\hat k$
$\therefore \overrightarrow {\rm{A}} \, \times \overrightarrow {\rm{B}} \,$का परिमाण$ = \,|\overrightarrow {\rm{A}} \times \overrightarrow {\rm{B}} |\, = \sqrt {{{(8)}^2} + {{( - 8)}^2} + {{( - 8)}^2}} \,$
$ = 8\sqrt 3 $