ઘડિયાળમાં સેકન્ડ કાંટાની લંબાઇ $1 \,cm$ છે,કાંટાની ટોચ પર આવેલા કણનો $15 \,sec$ પછી વેગમાં કેટલો ફેરફાર થશે?
શૂન્ય
$\frac{\pi }{{30\sqrt 2 }}cm/\sec $
$\frac{\pi }{{30}}cm/\sec $
$\frac{{\pi \sqrt 2 }}{{30}}cm/\sec $
ઘડિયાળમાં સેકન્ડ કાંટાની લંબાઇ $1 \,cm$ છે,કાંટાની ટોચ પર આવેલા કણનો $15 \,sec$ પછી વેગમાં કેટલો ફેરફાર થશે?
In $15\, second's$ hand rotate through $90°$.
Change in velocity $\left| {\overrightarrow {\Delta v} } \right| = 2v\sin (\theta /2)$
$ = 2(r\omega )\sin (90^\circ /2)$$ = 2 \times 1 \times \frac{{2\pi }}{T} \times \frac{1}{{\sqrt 2 }}$
$ = \frac{{4\pi }}{{60\sqrt 2 }} = \frac{{\pi \sqrt 2 }}{{30}}\frac{{cm}}{{\sec }}$ [As $T = 60 \,sec$]
Other Language