Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to
$\overrightarrow b $
$\overrightarrow c $
$\overrightarrow b \,.\,\overrightarrow c $
$\overrightarrow b \times \overrightarrow c $
Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to
(d ) $\vec a\,.\,\vec b = 0$ i.e. $\vec a $ and $\vec b$ will be perpendicular to each other
$\vec a\,.\,\vec c = 0$ i.e. $\vec a$ and $\vec c$ will be perpendicular to each other
$\vec b \times \vec c$ will be a vector perpendicular to both $\vec b$ and $\vec c$
So $\vec a$ is parallel to $\vec b \times \vec c$
Other Language