The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is
$0$
${A^2} - {B^2}$
$\overrightarrow B \times \overrightarrow A $
$2(\overrightarrow B \times \overrightarrow A )$
The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is
$(\vec A + \vec B) \times (\vec A - \vec B)$
$ = \vec A \times \vec A - \vec A \times \vec B + \vec B \times \vec A - \vec B \times \vec B$
$ = 0 - \vec A \times \vec B + \vec B \times \vec A - 0$
$ = \vec B \times \vec A + \vec B \times \vec A = 2(\vec B \times \vec A)$
Other Language