The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals
$P$
$(P+Q)$
$Q$
$(P-Q)$
The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals
Let the angle between two vectors $P$ and $Q$ be $\alpha$ and their resultant is $R$
So we can write
$R^{2}=P^{2}+Q^{2}+2 P Q \cos \alpha \ldots \ldots[1]$
When $Q$ is doubled then let the resultant vector be $R_{1},$ So we can write
$R_{1}^{2}=P^{2}+4 Q^{2}+4 P Q \cos \alpha \ldots \ldots .[2]$
Again by the given condition $R_{1}$ is perpendicular to $P$
So $4 Q^{2}=P^{2}+R_{1}^{2} \dots \ldots .[3]$
Combining $[ 2]$ and $[ 3]$ we get
$R_{1}^{2}=P^{2}+P^{2}+R_{1}^{2}+4 P Q \cos \alpha$
$\Rightarrow 2 P Q \cos \alpha=-P^{2} \dots \dots[4]$
combining $[ 1]$ and $[ 4]$ we get
$R^{2}=P^{2}+Q^{2}-P^{2}$
$\Rightarrow R=Q$