The resultant of $\overrightarrow P $ and $\overrightarrow Q $ is perpendicular to $\overrightarrow P $. What is the angle between $\overrightarrow P $ and $\overrightarrow Q $
${\cos ^{ - 1}}(P/Q)$
${\cos ^{ - 1}}( - P/Q)$
${\sin ^{ - 1}}\,(P/Q)$
${\sin ^{ - 1}}\,( - P/Q)$
The resultant of $\overrightarrow P $ and $\overrightarrow Q $ is perpendicular to $\overrightarrow P $. What is the angle between $\overrightarrow P $ and $\overrightarrow Q $
$\tan 90^\circ = \frac{{Q\sin \theta }}{{P + Q\cos \theta }}$
$⇒$ $P + Q\cos \theta = 0$
$\cos \theta = \frac{{ - P}}{Q}$
$⇒$ $\theta = {\cos ^{ - 1}}\left( {\frac{{ - P}}{Q}} \right)$