The position of a particle is given by $\overrightarrow r = (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$ momentum $\overrightarrow P = (3\overrightarrow i + 4\overrightarrow j - 2\overrightarrow k ).$ The angular momentum is perpendicular to
A
$x-axis$
B
$y-axis$
C
$z-axis$
D
Line at equal angles to all the three axes
The position of a particle is given by $\overrightarrow r = (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$ momentum $\overrightarrow P = (3\overrightarrow i + 4\overrightarrow j - 2\overrightarrow k ).$ The angular momentum is perpendicular to
$\vec L = \vec r \times \vec p = \left| {\,\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\1&2&{ - 1}\\3&4&{ - 2}\end{array}\,} \right|$$ = - \hat j - 2\hat k$
i.e. the angular momentum is perpendicular to $x-$axis.