The period of a body under SHM i.e. presented by $T = {P^a}{D^b}{S^c}$; where $P$ is pressure, $D$ is density and $S$ is surface tension. The value of $a,\,b$ and $c$ are
$ - \frac{3}{2},\,\frac{1}{2},\,1$
$ - 1,\, - 2,\,3$
$\frac{1}{2},\, - \frac{3}{2},\, - \frac{1}{2}$
$1,\,2,\,\frac{1}{3}$
The period of a body under SHM i.e. presented by $T = {P^a}{D^b}{S^c}$; where $P$ is pressure, $D$ is density and $S$ is surface tension. The value of $a,\,b$ and $c$ are
By substituting the dimension of each quantity we get
$T = {[M{L^{ - 1}}{T^{ - 2}}]^a}{[{L^{ - 3}}M]^b}{[M{T^{ - 2}}]^c}$
By solving we get $a = -3/2, b = 1/2$and $c = 1$
Other Language