The linear velocity of a rotating body is given by $\overrightarrow v = \overrightarrow \omega \times \overrightarrow r ,$where $\overrightarrow \omega $ is the angular velocity and $\overrightarrow r $ is the radius vector. The angular velocity of a body is $\overrightarrow \omega = \hat i - 2\hat j + 2\hat k$ and the radius vector $\overrightarrow r = 4\hat j - 3\hat k,$ then $|\overrightarrow v |$ is
A
$\sqrt {29} $units
B
$\sqrt {31} $units
C
$\sqrt {37} $units
D
$\sqrt {41} $units
The linear velocity of a rotating body is given by $\overrightarrow v = \overrightarrow \omega \times \overrightarrow r ,$where $\overrightarrow \omega $ is the angular velocity and $\overrightarrow r $ is the radius vector. The angular velocity of a body is $\overrightarrow \omega = \hat i - 2\hat j + 2\hat k$ and the radius vector $\overrightarrow r = 4\hat j - 3\hat k,$ then $|\overrightarrow v |$ is