The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is
${A^2}B$
Zero
${A^2}B\sin \theta $
${A^2}B\cos \theta $
The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is
Let $\overrightarrow A \,.(\overrightarrow B \, \times \overrightarrow A ) = \overrightarrow A \,.\,\overrightarrow C \,$
Here $\overrightarrow C = \overrightarrow B \times \overrightarrow A $ Which is perpendicular to both vector
$\overrightarrow A $ and $\overrightarrow B $
$\therefore\,\overrightarrow A \,.\overrightarrow {\,C} = 0$
Other Language