Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $
$\overrightarrow C $ must be equal to $|\overrightarrow A - \overrightarrow B |$
$\overrightarrow C $ must be greater than $|\overrightarrow A - \overrightarrow B |$
$\overrightarrow C $ must be less than $|\overrightarrow A - \overrightarrow B |$
$\overrightarrow C $ may be equal to $|\overrightarrow A - \overrightarrow B |$
Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $
If $\overrightarrow{\mathrm{C}}$ is resultant of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, then
$|\overrightarrow{\mathrm{C}}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos 120^{\circ}}$
$|\overrightarrow{\mathrm{C}}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{AB}} \quad\left[\text { Ascos } 120^{\circ}=-\frac{1}{2}\right]$
similarly, $|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos 120^{\circ}}$
$=\sqrt{A^{2}+B^{2}+A B}$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|>\mathrm{C}$