Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then
$|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$
It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$
$C$ is always equal to $A + B$
$C$ is never equal to $A + B$
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then
$\vec C + \vec A = \vec B$.
The value of $C$ lies between $A - B$ and $A + B$
$|\vec C|\; < \;|\vec A|\;\;{\rm{or}}\;\;|\vec C|\; < \;|\vec B|$