Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
$\hat i\,B\,\cos \theta + j\,B\sin \theta $
$\hat i\,B\,\sin \theta + j\,B\cos \theta $
$\hat i\,B\,\sin \theta - j\,B\cos \theta $
$\hat i\,B\,\cos \theta - j\,B\sin \theta $
Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
Dot product of two perpendicular vector will be zero.
Other Language