Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
$[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^2}I$
$[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^4}{I^2}$
$[{\mu _0}] = M{L^2}{T^{ - 1}}I$
None of these
Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
Dimension formula of $\varepsilon_0$
$\varepsilon_0=\frac{1}{4 \pi F } \frac{ v _1 v _2}{ r ^2}\left( F = MLT ^{-2}\right)$
$\varepsilon_0=\frac{1}{ MLT ^{-2}} \frac{ LAT \times AT }{1^2}$
$= M ^{-1} L ^{-3} t ^4 A ^2$
Dimension of $\mu_0$
$N / A ^2$ or $WbA A ^{-1} m ^{-1}$
$=[ M ][ L ][ T ]^{-2}[ A ]^{-2}$
Other Language