In the relation $y = a\cos (\omega t - kx)$, the dimensional formula for $k$ is
$[{M^0}{L^{ - 1}}{T^{ - 1}}]$
$[{M^0}L{T^{ - 1}}]$
$[{M^0}{L^{ - 1}}{T^0}]$
$[{M^0}LT]$
In the relation $y = a\cos (\omega t - kx)$, the dimensional formula for $k$ is
$[Kx]$ = Dimension of $\omega t = $(dimensionless)
hence $K = \frac{1}{X} = \frac{1}{L} = \left[ {{L^{ - 1}}} \right]$
$⇒$ $[K] = [{L^{ - 1}}]$
Other Language