In planetary motion the areal velocity of position vector of a planet depends on angular velocity $(\omega )$ and the distance of the planet from sun $(r)$. If so the correct relation for areal velocity is
$\frac{{dA}}{{dt}} \propto \omega r$
$\frac{{dA}}{{dt}} \propto {\omega ^2}r$
$\frac{{dA}}{{dt}} \propto \omega {r^2}$
$\frac{{dA}}{{dt}} \propto \sqrt {\omega r} $
In planetary motion the areal velocity of position vector of a planet depends on angular velocity $(\omega )$ and the distance of the planet from sun $(r)$. If so the correct relation for areal velocity is
$\frac{{dA}}{{dt}} = \frac{L}{{2m}} = \frac{{dA}}{{dt}} \propto vr \propto \omega {r^2}$
Other Language