In $C.G.S$. system the magnitutde of the force is $100$ dynes. In another system where the fundamental physical quantities are kilogram, metre and minute, the magnitude of the force is
$0.036$
$0.36$
$3.6$
$36$
In $C.G.S$. system the magnitutde of the force is $100$ dynes. In another system where the fundamental physical quantities are kilogram, metre and minute, the magnitude of the force is
${n_2} = {n_1}{\left( {\frac{{{M_1}}}{{{M_2}}}} \right)^1}{\left( {\frac{{{L_1}}}{{{L_2}}}} \right)^1}{\left( {\frac{T}{{{T_2}}}} \right)^{ - 2}}$
= $100{\left( {\frac{{gm}}{{kg}}} \right)^1}{\left( {\frac{{cm}}{m}} \right)^1}{\left( {\frac{{\sec }}{{min}}} \right)^{ - 2}}$
= $100{\left( {\frac{{gm}}{{{{10}^3}gm}}} \right)^1}{\left( {\frac{{cm}}{{{{10}^2}cm}}} \right)^1}{\left( {\frac{{\sec }}{{60\sec }}} \right)^{ - 2}}$
$n_2 = \frac{{3600}}{{{{10}^3}}} = 3.6$