In a satellite if the time of revolution is $T$, then $K.E.$ is proportional to
$\frac{1}{T}$
$\frac{1}{{{T^2}}}$
$\frac{1}{{{T^3}}}$
${T^{ - 2/3}}$
In a satellite if the time of revolution is $T$, then $K.E.$ is proportional to
$v = \sqrt {\frac{{GM}}{r}} $
$K.E. \propto {v^2} \propto \frac{1}{r}$ and ${T^2} \propto {r^3}$
$\,K.E.\, \propto {T^{ - 2/3}}$
Other Language