If velocity v, acceleration A and force F

Your Ultimate Guide to JEE & NEET Question Solutions

If velocity $v$, acceleration $A$ and force $F$ are chosen as fundamental quantities, then the dimensional formula of angular momentum in terms of $v,\,A$ and $F$ would be

A

$F{A^{ - 1}}v$

B

$F{v^3}{A^{ - 2}}$

C

$F{v^2}{A^{ - 1}}$

D

${F^2}{v^2}{A^{ - 1}}$

If velocity $v$, acceleration $A$ and force $F$ are chosen as fundamental quantities, then the dimensional formula of angular momentum in terms of $v,\,A$ and $F$ would be

$L \propto {v^x}{A^y}{F^z}$ $ \Rightarrow $ $L = k{v^x}{A^y}{F^z}$

Putting the dimensions in the above relation

$[M{L^2}{T^{ - 1}}] = k{[L{T^{ - 1}}]^x}{[L{T^{ - 2}}]^y}{[ML{T^{ - 2}}]^z}$

$⇒$ $[M{L^2}{T^{ - 1}}] = k[{M^z}{L^{x + y + z}}{T^{ - x - 2y - 2z}}]$

Comparing the powers of $M,\,L$ and $T$

$z = 1$ …$(i)$

$x + y + z = 2$ …$(ii)$

$ - x - 2y - 2z = - 1$ …$(iii)$

On solving $(i)$, $(ii)$ and $(iii)$ $x = 3,\,y = - 2,\,z = 1$

So dimension of $L$ in terms of $v,\,A$ and $f$
$[L] = [F{v^3}{A^{ - 2}}]$