If vectors $P, Q$ and $R$ have magnitude $5, 12$ and $13 $ units and $\overrightarrow P + \overrightarrow Q = \overrightarrow R ,$ the angle between $Q$ and $R$ is
${\cos ^{ - 1}}\frac{5}{{12}}$
${\cos ^{ - 1}}\frac{5}{{13}}$
${\cos ^{ - 1}}\frac{{12}}{{13}}$
${\cos ^{ - 1}}\frac{7}{{13}}$
If vectors $P, Q$ and $R$ have magnitude $5, 12$ and $13 $ units and $\overrightarrow P + \overrightarrow Q = \overrightarrow R ,$ the angle between $Q$ and $R$ is
$|\vec P|\; = \;5$, $|\vec Q|\; = 12$ and $|\vec R|\; = 13$
$\cos \theta = \frac{Q}{R} = \frac{{12}}{{13}}$
$\theta = {\cos ^{ - 1}}\left( {\frac{{12}}{{13}}} \right)$