If |V _1 + V _2| = |V _1 - V _2| and V_2

Your Ultimate Guide to JEE & NEET Question Solutions

If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then

A

${V_1}$ is parallel to ${V_2}$

B

${\overrightarrow V _1} = {\overrightarrow V _2}$

C

${V_1}$ and ${V_2}$ are mutually perpendicular

D

$|{\overrightarrow V _1}|\, = \,|{\overrightarrow V _2}|$

If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then

According to problem $|{\vec V_1} + {\vec V_2}|\; = \;|{\vec V_1} - {\vec V_2}|$

$⇒$  $|{\vec V_{{\rm{net}}}}|\; = \;|{\vec V'_{{\rm{net}}}}|$

So ${V_1}$ and ${V_2}$ will be mutually perpendicular.