If force $(F)$, length $(L) $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be
$F{L^{ - 1}}{T^2}$
$F{L^{ - 1}}{T^{ - 2}}$
$F{L^{ - 1}}{T^{ - 1}}$
$F{L^2}{T^2}$
If force $(F)$, length $(L) $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be
Let $m = K{F^a}{L^b}{T^c}$
Substituting the dimension of
$[F] = [ML{T^{ - 2}}],$ $[C] = [L]\;and\;[T] = [T]$
and comparing both sides, we get
$m = F{L^{ - 1}}{T^{ - 2}}$