If |A⃗×B⃗| = √(3)A⃗.B⃗, then the value of|

Your Ultimate Guide to JEE & NEET Question Solutions

If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is

A

${\left( {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 3 }}} \right)^{1/2}}$

B

$A + B$

C

${({A^2} + {B^2} + \sqrt 3 AB)^{1/2}}$

D

${({A^2} + {B^2} + AB)^{1/2}}$

If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is

$|\,\overrightarrow A \times \overrightarrow B |\, = \sqrt 3 (\overrightarrow A .\overrightarrow B )$

$AB\sin \theta = \sqrt 3 AB\cos \theta $$ \Rightarrow $$\tan \theta = \sqrt 3 $ $⇒$ $\theta = 60^\circ $

Now $|\overrightarrow R |\, = \,|\overrightarrow A + \overrightarrow B |\, = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } $

$ = \sqrt {{A^2} + {B^2} + 2AB\left( {\frac{1}{2}} \right)} $

$ = {({A^2} + {B^2} + AB)^{1/2}}$