If a vector 2î + 3ĵ + 8k̂ is perpendicular

Your Ultimate Guide to JEE & NEET Question Solutions

If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is

A

$-1$

B

$0.5$

C

$-0.5$

D

$1$

If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is

Given vectors can be rewritten as $\overrightarrow A = 2\hat i + 3\hat j + 8\hat k$ and $\overrightarrow B = - 4\hat i + 4\hat j + \alpha \hat k$

Dot product of these vectors should be equal to zero because they are perpendicular.

$\therefore \overrightarrow A \,.\,\overrightarrow B = - 8 + 12 + 8\alpha = 0$ $⇒$ $8\alpha = - 4$ $⇒$ $\alpha = - 1/2$