If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is
$\pi / 2$
$\pi / 3$
$\pi$
$\pi / 4$
If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is
We know that $\overrightarrow A \times \overrightarrow B = - (\overrightarrow B \times \overrightarrow A )$ because the angle between these two is always $90^°$.
But if the angle between $\overrightarrow A $ and $\overrightarrow B $ is $0^°$. Then $\overrightarrow A \times \overrightarrow B = \overrightarrow B \times \overrightarrow A = 0$.
Other Language