If A = 2î + 4ĵ - 5k̂ the direction of cosi

Your Ultimate Guide to JEE & NEET Question Solutions

If $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ the direction of cosines of the vector $\overrightarrow A $ are

A

$\frac{2}{{\sqrt {45} }},\frac{4}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{ - \,{\rm{5}}}}{{\sqrt {{\rm{45}}} }}$

B

$\frac{1}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{3}}}{{\sqrt {{\rm{45}}} }}$

C

$\frac{4}{{\sqrt {45} }},\,0\,{\rm{and}}\,\frac{{\rm{4}}}{{\sqrt {45} }}$

D

$\frac{3}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{5}}}{{\sqrt {{\rm{45}}} }}$
If $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ the direction of cosines of the vector $\overrightarrow A $ are
$\vec A = 2\hat i + 4\hat j - 5\hat k$
$|\overrightarrow A |\, = \sqrt {{{(2)}^2} + {{(4)}^2} + {{( - 5)}^2}} \, = \,\sqrt {45} $
 $\cos \alpha = \frac{2}{{\sqrt {45} }},\,\,\,\,\,\cos \beta = \frac{4}{{\sqrt {45} }},\,\,\,\,\cos \gamma = \frac{{ - 5}}{{\sqrt {45} }}$