A small block slides without friction down an inclined plane starting from rest. Let ${S_n}$be the distance travelled from time $t = n - 1$ to $t = n.$ Then $\frac{{{S_n}}}{{{S_{n + 1}}}}$ is
$\frac{{2n - 1}}{{2n}}$
$\frac{{2n + 1}}{{2n - 1}}$
$\frac{{2n - 1}}{{2n + 1}}$
$\frac{{2n}}{{2n + 1}}$
A small block slides without friction down an inclined plane starting from rest. Let ${S_n}$be the distance travelled from time $t = n - 1$ to $t = n.$ Then $\frac{{{S_n}}}{{{S_{n + 1}}}}$ is
(C) Distance travelled in $t$ second is, $s_{t}=u+a t-\frac{1}{2} a$
Given, $u=0$
$\therefore \quad \frac{s_{n}}{s_{n+1}}=\frac{a n-\frac{1}{2} a}{a(n+1)-\frac{1}{2} a}=\frac{2 n-1}{2 n+1}$
Other Language