A physical parameter a can be determined b

Your Ultimate Guide to JEE & NEET Question Solutions

A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is

A

(${b_1}\, + \,{c_1}\, + \,{d_1}\, + \,{e_1}$)$\%$

B

(${b_{1\,}}\, + \,{c_1}\, - \,{d_1}\, - \,{e_1}$)$\%$

C

($\alpha {b_1}\, + \,\beta {c_1}\, - \,\gamma {d_1}\, - \delta {e_1}$)$\%$

D

($\alpha {b_1} + \,\beta {c_1}\, + \,\gamma {d_1}\, + \,\delta {e_1}$)$\%$

A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is

$a = {b^\alpha }\,{c^\beta }/{d^\gamma }\,{e^\delta }$

So maximum error in a is given by

${\left( {\frac{{\Delta a}}{a} \times 100} \right)_{\max }} = \alpha \,.\,\frac{{\Delta b}}{b} \times 100 + \beta \,.\,\frac{{\Delta c}}{c} \times 100$

$ + \gamma \,.\,\frac{{\Delta d}}{d} \times 100 + \delta \,.\,\frac{{\Delta e}}{e} \times 100$

$ = \left( {\alpha {b_1} + \beta {c_1} + \gamma {d_1} + \delta {e_1}} \right)\% $