A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$
$0$
$30$
$90$
$180$
A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$
${P_x} = 2\cos t$, ${P_y} = 2\sin t$ $⇒$$\vec P = 2\cos t\;\hat i + 2\sin t\;\hat j$
$\vec F = \frac{{d\vec P}}{{dt}} = - 2\sin t\;\hat i + 2\cos t\;\hat j$
$\vec F.\vec P = 0$ $⇒$ $\theta = 90^\circ $