A man measures time period of a pendulum $(T)$ in stationary lift. If the lift moves upward with acceleration $\frac{g}{4},$ then new time period will be
$\frac{{2T}}{{\sqrt 5 }}$
$\frac{{\sqrt 5 T}}{2}$
$\frac{{\sqrt 5 }}{{2T}}$
$\frac{2}{{\sqrt 5 T}}$
A man measures time period of a pendulum $(T)$ in stationary lift. If the lift moves upward with acceleration $\frac{g}{4},$ then new time period will be
$T = 2\pi \sqrt {\frac{l}{g}} $ $⇒$ $\frac{{T'}}{T} = \sqrt {\frac{g}{{g'}}} = \sqrt {\frac{g}{{g + \frac{g}{4}}}} = \sqrt {\frac{4}{5}} = \frac{2}{{\sqrt 5 }}$