A body of mass $m $ accelerates uniformly from rest to ${v_1}$ in time ${t_1}$. As a function of time $ t$, the instantaneous power delivered to the body is
$\frac{{m{v_1}t}}{{{t_1}}}$
$\frac{{mv_1^2t}}{{{t_1}}}$
$\frac{{m{v_1}{t^2}}}{{{t_1}}}$
$\frac{{mv_1^2t}}{{t_1^2}}$
A body of mass $m $ accelerates uniformly from rest to ${v_1}$ in time ${t_1}$. As a function of time $ t$, the instantaneous power delivered to the body is
$P = \vec F.\vec v$$ = ma \times at$
$ = m{a^2}t$[as $ u = 0$]
$ = m{\left( {\frac{{{v_1}}}{{{t_1}}}} \right)^2}t = \frac{{mv_1^2t}}{{t_1^2}}$
$\left[ {{\rm{As }}a = {v_1}/{t_1}} \right]$
Other Language